

3 Sobolev Spaces

Exercise 3.1. Let $I = (0, 1)$. Verify that $W^{1,\infty}(I)$ is a Banach space with respect to $\|\cdot\|_{W^{1,\infty}}$.

Exercise 3.2. Let $u \in W^{1,p}(0, 1)$ with $1 < p < \infty$. Show that $\frac{u(x)}{x} \in L^1(0, 1)$ if and only if $u(0) = 0$. Check that $v(x) = (1 + |\log(x)|)^{-1}$ is in $W^{1,1}(0, 1)$, satisfies $v(0) = 0$ but $\frac{v(x)}{x} \notin L^1(0, 1)$.

Exercise 3.3. Let $I = (0, 1)$. Construct a bounded sequence in $W^{1,1}(I)$ that admits no converging subsequence in $L^\infty(I)$.

We recall the following classical theorem (see Federer's *Geometric Measure Theory*, 3.1.6).

Theorem 3.4. Let $f : \mathbb{R}^m \rightarrow \mathbb{R}^n$ be a Lipschitzian function. Then f is differentiable \mathcal{L}^m almost everywhere, if \mathcal{L}^m is the Lebesgue measure on \mathbb{R}^m .

Exercise 3.5. Let $I = (0, 1) \subset \mathbb{R}$. Show that the space $\text{Lip}(I)$ of Lipschitzian functions $u : I \rightarrow \mathbb{R}$ coincides with the space $W^{1,\infty}(I)$.

Exercise 3.6. Let $\varphi \in \mathcal{D}(\mathbb{R}) = C_c^\infty(\mathbb{R})$ be fixed different than the zero function and let $1 \leq p \leq \infty$. Set $u_n(x) = \varphi(x + n)$ and check that :

1. $\{u_n\}_{n \in \mathbb{N}}$ is bounded in $W^{1,p}(\mathbb{R})$,
2. there is no subsequence of $\{u_n\}_{n \in \mathbb{N}}$ which converges strongly in $L^q(\mathbb{R})$ for any $1 \leq q \leq \infty$,
3. $u_n \xrightarrow[n \rightarrow \infty]{} 0$ and $u'_n \xrightarrow[n \rightarrow \infty]{} 0$ in $L^p(\mathbb{R})$ for all $1 < p < \infty$.